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Abstract Despite numerous original publications describ-
ing the structural complexity of N- and O-linked glycans on
glycoproteins, only very few answer the basic question of
which particular glycans are linked to which amino acid
residues along the polypeptide chain. Such structural infor-
mation is of fundamental importance for understanding the
biological roles of complex glycosylations as well as deci-
phering their non-template driven biosynthesis. This review
focuses on presenting and commenting on recent strategies,
specifically aimed at identifying the glycoproteome of cul-
tured cells and biological samples, using targeted and global
enrichment procedures and utilizing the high resolution
power, high through-put capacity and complementary frag-
mentation techniques of tandem mass spectrometry. The
goal is to give an update of this emerging field of protein
and glyco-sciences and suggest routes to bridge the data gap
between the two aspects of glycoprotein characteristics, i.e.
glycan structures and their attachment sites.

Keywords Glycoproteomics - Glycopeptide - Attachment
sites - Liquid chromatography - Tandem mass spectrometry -
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Introduction

The four essential building blocks of all cells are the oligo-
nucleotides, proteins, lipids and carbohydrates (glycans).
Oligonucleotides and proteins are linear polymers that have
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only one basic type of linkage between their different build-
ing blocks (nucleic and amino acids). In contrast glycans are
built from monosaccharide residues that can be linked to
each other in linear or branched sequences via either «- or
[3-glycosidic linkages to one of several positions onto a
neighbouring monosaccharide [1]. Glycosylation of proteins
is one of many post-translational modifications (PTMs) that
determine the processing, distribution and metabolism as
well as the biological functions of most proteins. The func-
tions of glycans on protein are to ensure correct folding,
provide protease resistance and solubility, and to serve as
biological ligands for carbohydrate binding proteins.
Specific glycans play different roles in growth, devel-
opment and differentiation, cell-cell interactions, cell
migrations, host-microbe interactions and in blood hae-
mostasis [1-4].

Glycosylation is, in contrast to the biosynthesis of DNA,
RNA and proteins, understood as a non-template driven
enzymatic process that allows for glycan attachment, trim-
ming, chain elongation and branching as well as glycan
derivatization. It has been estimated that 1-2 % of the
human genome codes for proteins involved in the glycosyl-
ation process [5]. Epimerization, deacetylation and sulpha-
tion are typical steps for the processing of proteoglycans, a
large and important group of glycoproteins whose structural
elucidations will not be the subject of this review (see
instead [6]). Another group of glycoproteins that will not
be covered in this review are the GPI-linked proteins for
which we instead refer to a recent review [7].

For most soluble or membrane bound glycoproteins,
including mucins and glycopeptides, there are in principal
two major forms of glycosylation, which differ principally
in their subcellular compartmentalization and processing
and which we commonly refer to as N- and O-linked gly-
cosylations. The N- refers to the glycosidic linkage anchor-
ing the glycan to the amide group side chain of the Asn
residues, and the O- refers to the glycosidic linkage
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anchoring the glycan to the gamma hydroxyl groups of Ser
and Thr residues of the peptide stretch. The N-linked gly-
cosylation takes place in the endoplasmic reticulum (ER), is
catalysed by one oligosaccharyltransferase complex which
transfers a preassembled oligosaccharide from its dolichol-
anchor to the growing polypeptide chain, and is strictly
dependent on the presence of an Asn-X-Ser/Thr/Cys con-
sensus sequence, where X is any amino acid except proline
[8, 9]. The GalNAc O-glycosylation of proteins, commonly
referred to as the mucin-type O-glycosylation, is initiated by
a family of 20 polypeptide N-acetylgalactosaminyltransfer-
ase (ppGalNAcT) enzymes [10, 11] and is usually found in
regions rich in Ser, Thr and Pro residues. Presently, there is
no known consensus sequence for mucin-type O-
glycosylation, which most likely is due to the different
substrate specificities of the various ppGalNAcTs. The
details of N- and O-linked glycan biosynthesis are beyond
the scope of this review and the readers are instead referred
to the following reviews [12—16]. More recently additional
unique protein glycosylations have been defined, which
play significant roles in signalling, either between cells or
between subcellular compartments. The O-fucosylation of
Notch [17] and the O-GIcNAc glycosylation of intranuclear
proteins [18] are such examples of non-classical glycosyla-
tion of proteins that are deeply involved in differentiation
and cell signalling [19].

Due to the many theoretical possibilities of linking mono-
saccharides to each other into branched and linear sequences
decades of large efforts have been put into developing—and
broadly applying—sensitive and accurate methods for the
detailed structural characterization of thousands of glyco-
conjugates. No single method is however available [20] for
a complete characterization of biological glycoconjugates
and thus for each and every one of them to be completely
assigned in all structural details several chromatographic,
mass spectrometric, enzymatic or affinity based as well as
physico-chemical methods (e.g. NMR spectroscopy) are
needed. This is to unambiguously define the constituent
monosaccharides, their conformation, linkage positions
and configurations, sequence and possible branching, total
size and derivatizations. However, the number of theoretical
permutations of glycan structures are in reality restricted by
the number and types of genes and their corresponding
proteins critical for the biosynthesis of the actual glycocon-
jugates expressed at any given time in a defined cell and
organism. Thus, with data from the many glycan structures
already defined in detail during the last decades and by the
conceptual understanding of genetic restriction, the structur-
al variability is in reality becoming within reach of novel
high-throughput analytical methods such as LC-MS/MS.
Thus, in many recent publications glycan structures are de-
duced or postulated from earlier studies of identical or similar
material. However, whenever a new set of glycoconjugate
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structures are identified the tedious work of a complete struc-
tural characterization should be encouraged to avoid future
confusions. This structural complexity will put pressure and
responsibility onto the glyco-science community to keep rel-
evant methods available and updated as well as to include only
accurate data into relevant databases.

As much as the complexity of glycoconjugates is an
attractive challenge to the glyco-science field it must also
be realized as a potential repellent barrier for many other
fields of natural sciences. Traditionally, glyco-scientists
characterize glycoproteins through a “glycomics” approach
cleaving off the glycans, and characterizing them in large
detail, but put less effort on the proteins while other scientist
interested in the same glycoproteins often cleave off the
glycans but concentrate only on the proteins. This often
leads to an unnecessary splitting of the structural data. With
the advent of global and targeted high-throughput analyses
of proteins—and more recently of glycoproteins—we fore-
see a future possibility for collecting all structural data in the
same databases.

In this review of glycoproteomics we will focus on pre-
senting various means of isolating and characterizing gly-
coproteins from biological sources, to yield reliable and
storable data both as to the glycan structures, their attach-
ment sites as well as to protein sequences and identities.

Lectin and antibody affinity purification for targeted
glycoproteomics; i.e. single glycoprotein analysis

Glycosylation of proteins offers both advantages and disad-
vantages when it comes to purification procedures (Table 1).
One advantage is that glycans may be used as additional
ligands for affinity purification using Carbohydrate Binding
Proteins (CBP). However, as glycoproteins may be present as
different glycoforms of the same core protein the use of glycan
structures for purification may spuriously isolate non repre-
sentative monospecies glycoproteins. Also, glycans may
shield antigenic epitopes and thus it may be more difficult to
use antibodies reactive towards the corresponding “core”
proteins.

Lectin purification

Two distinct classes of CBPs are the lectins and the glycan
binding antibodies. (Another class of CBP is the glycosami-
noglycan binding proteins, which will not be addressed
here). Lectins were first discovered in plants more than
100 years ago (for details see the review by Sharon and
Lis [21]) but have now been described in all living organ-
isms and play significant roles in many biological systems
(chapter 46 of reference [1]). The term “lectin” (lek’tin) is
derived from the Latin word legere, meaning: pick out or
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Table 1 Common strategies and typical characteristics for enrichment and mass spectrometric analysis of glycoproteins and glycopeptides

Substrate Method Pros/Cons References
Enrichment
Targeted  Glycoproteins  Antibody + High specificity for targeted glycoproteins [57, 59, 62, 63, 67]
- Limited by availability of specific antibodies
Global Glycoproteins  Lectin + Readily available and cheap [72]
+ Enrichment of glycoprotein subclasses
- No absolute specificity
Boronic acid + Straightforward enrichment of glycoproteins [43, 45, 47]
Mild Hydrazide + Sialic acid specific enrichment of both N- and O- [80, 99, 122]
chemistry glycoproteins
+ Covalent conjugation enables harsh wash procedures
- Non-sialylated structures not enriched
SimpleCells + Simple and uniform O-glycosylation [35, 106]
(Lectin) - Limited to genetically modified cell lines
Targeted  Glycopeptides  Antibody + High specificity for targeted glycopeptides [60]
- Limited by availability of specific antibodies
Global Glycopeptides  Lectin + Readily available and cheap [34, 101-103, 110,
+ Enrichment of glycopeptide subclasses 138, 145]
- No absolute specificity
Hydrazide + Sialic acid specific enrichment of N-glycopeptides [97, 100]
chemistry + Covalent conjugation enables harsh wash procedures
- Applicability not demonstrated for O-glycopeptides
TiO, + Specific for sialic acids and phosphates [115-117]
+ Enrichment of both N- and O-glycopeptides
- Non-sialylated structures not enriched
HILIC + Rapid and simple enrichment of glycopeptides [40, 55, 64, 65, 136]
- Limited to hydrophilic glycopeptides
Boronic acid + Straightforward enrichment of glycopeptides [46, 48]
- Not demonstrated for biological mixtures
LC-ESI-MS/MS-methods
Glycopeptides  CID + High sensitivity and speed [56, 57, 59, 62,
+ MSn capability 63, 73, 75, 80, 99,
+/—  Predominantly glycosidic fragmentation 142]
HCD + High sensitivity and speed [35, 61, 146]
+ Both glycosidic and peptide fragmentation
+ High resolution MS2-spectra
- Limited to Orbitrap instruments
ECD, ETD + Peptide fragmentation with glycans intact [35, 63, 66, 68,
- Low sensitivity 99, 146—-148]

- Limited to low m/z precursor ions

choose, and is now the generally accepted term for this type of
CBPs. However, some lectins still bear the older designation
‘agglutinin’ in their commonly used abbreviations. This is due
to the classical method of detecting lectins by which human or
animal red blood cells were tested for agglutination. To deter-
mine that the agglutinating agent is a true lectin it must be
possible to inhibit the agglutination by carbohydrates. Lectins
do not display any enzymatic properties and may bind both to
free oligosaccharides and to carbohydrate moieties on glyco-
proteins and glycolipids. Although all lectins by definition are

primarily carbohydrate-binding proteins, many plant lectins
show additional binding specificities not directed towards
carbohydrate residues [22, 23]. Such binding specificities
may be part of the explanation for “the lectin riddle”, i.e. the
finding that glycoproteins of complex biological samples have
essentially the same glycan structures irrespective of their
retention on lectin affinity columns or not [24]. Thus, it can
not be expected that intact glycoproteins and protease digested
glycopeptides originating from the same glycoprotein will
have the same affinity to a specific lectin. Typically single-
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site binding affinity of many lectins appears to be low (K4 in
the micromolar range) although some lectins show
higher affinity with Ky in the nanomolar range [25].
The low affinity lectins require multivalent binding to
glycans to obtain high avidity in vivo [1, 26]. The
advantage of using lectins is that they are rather cheap
and together they provide a broad panel of glycan
binding proteins, which may be used in affinity chro-
matography, lectin blotting and affinity electrophoresis
such that some glycoproteins can be separated and/or
characterized based on glycan structures and protein
glycoforms [27].

Concanavalin A (ConA) is the most extensively used
lectin, which shows specific binding towards o-linked
mannose/glucose (Man/Glc) typically found on N-linked
glycans [28]. The second most common lectin used for
glycoprotein characterization and/or enrichment purposes
is the wheat germ agglutinin (WGA) that show binding
towards N-acetylglucosamine (GIcNAc) [29] but also to
N-acetylneuraminic acid (NeuSAc) residues [30]. Other
commonly used plant lectins, that specifically bind to
NeuSAc terminated oligosaccharides with subterminal ga-
lactose (Gal) or N-acetylgalactosamine (GalNAc) resi-
dues, are the Sambucus nigra (elderberry) lectin (SNA,
ELB) that recognizes NeuS5Acx2-6Gal and NeuSAcx2-
6GalNAc structures [31], and Maackia amurensis leu-
koagglutinin (MAL), and Maackia amurensis hemagglu-
tinin (MAH) from M. amurensis seeds [32], which
recognize NeuSAcwu2-3Galf3 structures [33].

Although lectin affinity chromatography has mostly been
used for isolation of unique glycoproteins two global strat-
egies, for enriching a range of glycoproteins/glycopeptides
sharing a common glycan structure, have recently been
introduced using Jacalin and Vicia villosa lectins which
specifically recognize the GalNAcxl-O- residues typical
for mucin type glycans O-linked to polypeptide sequences
[34, 35], see below.

Immunopurification

Immunopurification or immunoprecipitation (IP) refers to
the method of using specific antibodies directed to specific
antigens (epitopes) to target and purify single proteins.
Glycan binding antibodies or protein binding antibodies
may both be used for purification of specific glycoproteins
(targeted immunopurification). As for lectins, the antibodies
may be immobilized to carrier matrices such as agarose or
magnetic beads [36]. The antibody-coated beads are mixed
with the protein sample and the targeted proteins are inter-
acting with the antibody and captured onto the beads and
thus become immunoprecipitated. Alternatively, the anti-
body and sample may first be mixed and protein A/G coated
beads are then added to specifically bind the antigen-
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antibody complex from the mixture. The most common
approach has been to use the highly-porous agarose beads
(agarose resins or slurries) as they tend to have high binding
capacity, where almost all possible binding sites on the
agarose particle (50—150 um in size) are available for bind-
ing antibodies. Magnetic beads on the other hand, lack a
porous center to increase the binding capacity, but the mag-
netic beads are significantly smaller (1-4 um), and offer a
more effective surface area-to-volume ratio for maximal
antibody binding [36]. In some cases, there is no antibody
available to target a protein and therefore recombinant tag-
ging technologies are used. The disadvantage of this tech-
nique is that glycosylation is in most cases cell and species
specific and thus recombinantly expressed glycoproteins are
often glycosylated differently compared to the native pro-
teins. The advantage of the recombinant technique is the
ability to introduce a selected targeted epitope for immuno-
or affinity purification such as His-, Flag-, c-Myc, GFP-,
V5-tags, for which commercial purification kits are avail-
able. A recent review nicely covers the topic on protein
depletion, pre-fractionation and enrichment of proteins for
proteomics [37].

Hydrophilic interaction chromatography and boronic
acid purification of glycoproteins and glycopeptides

Hydrophilic interaction chromatography is based on normal
phase chromatography, which uses a hydrophilic stationary
phase e.g. silica, sepharose or cellulose, for retaining glyco-
peptides owing to the hydrophilicity of the glycan part [38, 39].
HILIC can thus be used to separate protease-digested glyco-
peptides from other peptides. Often pronase, which is a mix-
ture of proteases from Streptomyces griseus, which can cleave
almost any peptide bond and thus produce rather short peptide
fragments, has been used prior to the HILIC step. Mostly
pronase digested N-glycopeptides, carrying relatively larger
glycans compared to O-glycans, has been studied, but there
are also some examples of O-glycopeptide studies using
HILIC [40, 41]. Miniaturized protocols using HILIC microtips
packed with cotton wool has been developed for simple and
rapid enrichment of tryptic N-glycopeptides [42].

The use of boronic acid functionalized solid supports has
also been introduced for the purification of glycopeptides
and glycoproteins [43—48]. The retention to the solid sup-
port is based on binding between e.g. phenyl boronic acid
derivatives and the cis-diols of glycans at pH>8 and then
release of the glycans by acidification. The characteristic
binding specificities of the HILIC and boronic acid
approaches, where the former is based on weak hydrophilic
interaction and the latter on covalent binding, make these
methods particularly useful for global approaches within the
fields of glycoproteomics/glycopeptidomics.
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Targeted O-glycoproteomics; structural characterization
of single glycoproteins using LC-MS/MS

In order to efficiently characterize site-specific O-glycan
structures of O-glycoproteins several strategies, as ex-
emplified above, must often be used to achieve suffi-
cient purification of the targeted O-glycoproteins and/or
O-glycopeptides (Fig. la). Historically, O-glycopeptides
originating from protease digested O-glycoproteins were
purified by the use of reversed phase HPLC and the
peptide sequence determined by Edman degradation
[49-53] or sometimes amino acid composition analysis
[54]. The inability to detect the Edman product for a
specific Ser or Thr was used to indicate that this residue
was a true glycosylation site. Large amounts of pure
glycoprotein are however needed for Edman degrada-
tion. Due to higher analytical sensitivity, high mass

Targeted enrichment

resolution and high speed, mass spectrometric methods
have become dominating in the field of proteomics and,
as we present in this review, of glycoproteomics.

Glycopeptide analysis

The online coupling of nano liquid chromatography (LC)
with electrospray ionization (ESI) and tandem mass spec-
trometry (MS/MS) makes it straightforward to purify pep-
tides and glycopeptides and perform the mass measurements
as the glycopeptides elute from the column. Most often C18
reversed phase chromatography is used, but also hydrophilic
interaction liquid chromatography (HILIC) has been used
for glycopeptide purification purposes [40, 55]. In the fol-
lowing paragraphs analytical characteristics of various frag-
mentation strategies for tandem mass spectrometry of
glycopeptides are being outlined.

Global enrichment
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Fig. 1 Schematic view of glycoproteomics methods for targeted and
global enrichment of glycoproteins and glycopeptides. a Typical affin-
ity enrichment of targeted glycoproteins from biological samples. The
glycans may be N-linked, O-linked or both. Enriched glycoproteins (as
well as endogenous glycopeptides) may be subjected directly to MS
analysis, or may be digested by proteases before the MS analysis of
glycopeptides and peptides. b Enrichment through mild periodate
oxidation and hydrazide chemistry for sialic acid specific isolation of
both N- and O-glycopeptides. The sialic acids are hydrolyzed by
formic acid (HCOOH) treatment at 80°C for both N- and O-
glycopeptides, but retained after cold HCI treatment. Enrichment of

O-glycopeptides via HCI release has not yet been demonstrated.
¢ Lectin based strategies for the global enrichment of e.g. sialylated
core 1 O-glycopeptides (left arrow) or N-glycopeptides (right arrow).
Glycosidases may be used to trim down the O-glycans and PNGase F
may be used to remove N-glycans from N-glycopeptides and glyco-
proteins. Enzymatically modified or intact glycopeptides are then
analyzed by MS. d The Simple cell global approach produces truncated
glycoforms of O-glycoproteins, which after enzymatic treatment
allows for the isolation of simplified O-glycopeptides finally enriched
by VVA lectin chromatography and analyzed by MS
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CID and HCD MS fragmentation strategies

Starting from a mixture of protease digested peptides
and O-glycopeptides, obtained by any of the affinity
based glycoprotein purification strategies described
above and in Fig. 1, a number of recent studies have
appeared where tandem MS techniques for the site-
specific characterization of protein O-glycan structures
have been used [56—72]. An important limitation related
to O-glycopeptide analysis using tandem MS is that
collision-induced dissociation (CID), the most frequently
used fragmentation technique in LC-ESI-MS/MS, essen-
tially results only in glycosidic fragmentation of the
glycan leaving the peptide intact (Figs. 2 and 3). Thus,
only the saccharide composition and the sequence of the
glycan part may be determined by analysis of a CID-
MS2 spectrum. Glycan oxonium ions e.g. NeuSAc®
(292 atomic mass units (amu) and its loss of water to
274 amu, HexHexNAc" (366 amu), (Hex),HexNAc"
(528 amu) and NeuSAcHexHexNAc' (657 amu) are
however diagnostic ions [73] (Fig. 2), which give im-
portant information regarding the saccharides present.
Nevertheless, when using positive ion mode detection
of fragment ions it is not possible to tell whether e.g. a
HexNAc is a GalNAc or a GIcNAc, the absolute glycan
identification must be determined by other means, or be

tentatively assigned from known glycosylation pathways
related to the glycoproteins studied.

After protease digestion of the targeted O-glycoprotein
the LC-MS/MS analysis will also detect peptides originat-
ing from the O-glycoprotein (Fig. 1a). The identities of
these peptides are obtained by searching protein databases
for the precursor ion mass and by identification of frag-
ment ions containing the peptide backbone in the CID-
MS2 spectrum. The identities of the O-glycopeptides may
be established by using the Glycomod tool [74], which
attempts to match an appropriate glycan composition to all
possible tryptic peptides containing serine and/or threonine
to add up to the measured precursor mass. A higher
accuracy of the measured precursor, e.g. by using high-
resolution instruments such as a FT-ICR or Orbitrap,
results in fewer but more reliable hits. Proposed glycan
compositions, which match that of previously character-
ized glycans are complemented with an HTML link to the
GlycosuiteDB, where further information and relevant
examples from the literature can be accessed [74]. Glyco-
peptide hits are then verified or dismissed by inspection of
the CID-MS2 spectra so that the glycopeptide proposed
by Glycomod matches the assigned CID-MS2 spectrum
(Fig. 2) [57]. Also, further fragmentation (CID-MS3) of
glycopeptide fragments may be helpful in the determina-
tion of glycopeptide structure, especially if the O-glycan
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Fig. 2 Typical CID fragment ions obtained from LC-MS/MS of tryptic
glycopeptides. An expansion of a precursor MS1 spectrum for a tryptic
glycopeptide from human «-dystroglycan (DPVPGKPTVTIR) is
shown with the high resolving power of FT-ICR instrumentation (/eff)
and the resulting CID-MS2 spectrum (right). The deduced glycan
structure (boxed) and proposed structures of selected glycopeptide
and glycan fragments are annotated. The composition of this glyco-
peptide was deduced from the stepwise loss of saccharide units from
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the glycopeptide and based on the simultaneous presence of analogous
glycopeptides lacking one or two NeuSAc saccharides, identified in
simpler CID spectra [57]. ETD fragmentation was recently used to
provide peptide backbone fragmentation between the two Thr residues
showing the presence of two separate Man-O- glycans [77]. The
monoisotopic mass of the precursor (m/z 972.7739, z=3) is 3.2 ppm
off from the theoretical value. Black circle, Hex (Gal and Man); black
square, HexNAc (GlcNAc); bold line, peptide. Modified from [57]
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Fig. 3 Typical CID and ECD fragment ions obtained from LC-MS/
MS after tryptic digestion of human amyloid precursor protein. a CID-
MS2 fragmentation of the tryptic glycopeptide GLTTRPGSGLTNIK
modified with three separate HexHexNAc-O-Thr glycans. Prominent
glycosidic fragmentations are observed, which allows the glycan
sequences to be verified. The lack of (HexNAc), (m/z 407) and Hex
(HexNAc), (m/z 569) oxonium ions in the CID-MS2 spectrum indi-
cates that the peptide is modified with three separate HexHexNAc
structures as opposed to e.g. one core 2 and one core 1 glycan (b)
ECD spectrum of the same precursor ion as in panel a. The O-
glycopeptide is fragmented into c- and z-type ions, without disrupting
the labile HexHexNAc-O-Thr modifications, thereby allowing the
attachment sites to be determined. Modified from [60]

structure is complex. Occasionally, the absolute identifica-
tion of O-glycopeptides can be obtained by the presence
of peptide backbone fragmentation even during CID
conditions [57, 59].

LC-MS/MS using CID fragmentation of tryptic glyco-
peptides has recently been used in four studies of «-
dystroglycan (x-DG) [56-58, 75] (Fig. 2). Aberrant glyco-
sylation of «-DG is implicated in a number of congenital
muscle dystrophies, which makes this protein an important
target for glycosylation analyses. An unusual O-glycan
based on O-Man linkage to the protein, which is important
for the «-DG function, has been described [76]. Yoshida-
Moriguchi ef al. recombinantly expressed the mucin region
of a-DG in HEK293 cells and used Wisteria Floribunda

agglutinin (WFA) lectin, which binds terminal GalNAc res-
idues linked to the 3’ or 6 position of Gal, for the affinity
purification of GaINAc modified a-DG. After tryptic diges-
tion they used ESI-LC-MS/MS for the site specific charac-
terization of «-DG glycopeptides, and NMR analysis of
released saccharides for determining their anomeric and
linkage specific composition, and found a novel Gal-
NAcP1-3GIcNAcf 1-4Man-O- structure, which was substi-
tuted with a 6-O-phosphate group at the Man residue [75]. A
recent study applying similar strategies using recombinant
mouse x-DG expressed in HEK293 cells did also identify
this novel O-mannosylated structure but without the modi-
fication of the phosphorylated Man [58]. In this study, the
secreted -DG fusion protein was affinity purified using
protein G, digested with trypsin and the glycopeptides were
further enriched using WFA lectin chromatography.

Two studies have reported the characterization of glyco-
sylation pattern of «-DG from native skeletal muscle in
rabbit [56] and in human skeletal muscle [57]. The O-
glycosylation core structures and site occupancies were
determined and showed similar results regarding the
GalNAc-O- and Man-O- core structures but differences
were observed for the site occupancy of the Man-O- struc-
tures between the two studies. Lectin affinity chromatogra-
phy using wheat germ agglutinin (WGA) was used both
before laminin-sepharose affinity purification of the rabbit
«-DG, and before immunopurification of the human skeletal
muscle x-DG with the a-DG specific V/4-4 antibody. Dif-
ferent glycoforms of native human and rabbit skeletal mus-
cle ®-DG may thus have been purified and explain the
glycosylation discrepancies [77].

Higher energy collision dissociation (HCD) is a recently
introduced fragmentation technique of Orbitrap instrumenta-
tions [78] where O-glycans are readily expelled from the O-
glycopeptide, also providing peptide backbone fragmentation
useful for identification purposes [61]. As a rule of thumb it is
more likely that, when using CID or HCD, peptide backbone
fragmentations will be observed for O-glycopeptides carrying
more simple O-glycans. Strategies for removing parts of the
O-glycans have thus been introduced (Fig. lc), e.g. using
glycosidases, to increase the chances of peptide fragmentation
in the presence of partially intact glycosylations, which thus
can be used for pinpointing the O-glycosylation site(s) in
glycopeptides containing several Ser or Thr residues
[79, 80]. Such strategies have specifically been used in global
O-glycoproteomics studies and are discussed below.

The CID fragmentation analysis of O-glycopeptides may
also be complemented with O-glycosylation site tagging
methods in order to pinpoint the glycosylation sites. Lee et
al. [62] isolated Apolipoprotein E (ApoE) from human
blood-derived macrophages using immunopurification.
Then, they prepared ApoE peptides and glycopeptides using
in-gel digestion, and identified a range of O-glycopeptides
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including the known Thr212 glycosylation site but also
novel glycopeptides from the C-terminal tryptic peptide
301-VQAAVGTSAAPVPSDNH-317. To pinpoint the gly-
cosylation sites of this glycopeptide they performed [3-
elimination using methylamine vapor in order to specifically
tag the glycopeptide at the site of glycosylation [81, 82].
This covalent modification was not fragmented during CID
conditions and the glycosylation site could thus be selec-
tively pinpointed to Ser308 (Ser290 excluding the signal
peptide) using analysis of the peptide backbone b- and
z-ion fragments [62].

Chemical (3-elimination (mild alkaline treatment) has tra-
ditionally been used to release O-linked oligosaccharides from
glycoproteins. Unfortunately, this strategy is not well suited
for glycoproteomic studies. Conventional (3-elimination (re-
ductive or non-reductive) results neither in the complete con-
version into deglycosylated species nor does it preserve the
structural integrity of the peptide backbone [83]. However,
alternative strategies have been developed to circumvent the
destructive conditions of conventional beta elimination. Wells
et al. developed a protocol for beta elimination followed by
Michael addition with dithiothreitol (BEMAD) specifically
designed for glycoproteomic studies [84]. The procedure is
milder and works relatively well for releasing GIcNAc-O- at
Ser and Thr residues without degrading the peptide backbone.
The BEMAD procedure also adds a uniform mass tag (dithio-
threitol, DTT) to the formerly O-glycosylated amino acid,
thereby simplifying the identification of the modified site.
However, the mild BEMAD procedure does not readily re-
lease O-linked GalNAc residues [85].

ECD and ETD MS fragmentation strategies

The ECD and ETD [86] fragmentation methods may be used
as a complement to CID for the characterization of glycopep-
tides and may be performed subsequent to each other on the
same precursor ions during LC-MS/MS runs. ECD and ETD
are known to provide peptide backbone fragmentation into c-
and z-ions, also in the presence of labile post-translational
modifications such as glycosylation (Fig. 3) [87, 88]. Thus,
these techniques provide direct peptide fragmentation of gly-
copeptides useful for identification purposes and for pinpoint-
ing glycan attachment sites. However, the ECD and ETD
fragmentation methods are less sensitive compared to CID
and HCD and the m/z values of precursor ions should be
below 1,000 amu in order to obtain efficient peptide fragmen-
tation. Perdivara et al. used ETD for the characterization of O-
glycopeptides derived from trypsin and chymotrypsin cleav-
age of recombinant human amyloid precursor protein (APP)
expressed in Chinese hamster ovary (CHO) cells [63]. APP is
known to be both N- and O-glycosylated [§9-91], but no O-
glycosylation sites had previously been defined. The site-
specific characterization of O-glycosylation sites was
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accomplished with LC-MS/MS using a combination of CID
and ETD, and the sites were pinpointed to Thr291, Thr292
and Thr576 of the APP695 isoform [63].

MS analysis of endogenous glycopeptides and small
glycoproteins

A series of peptidomics studies have appeared where endog-
enous O-glycopeptides have been identified. Zougman et al.
used CSF samples and separated endogenous peptides from
proteins using 10 kDa molecular cut-off ultracentrifugation
membranes [61]. The peptide fraction was then analyzed with
ESI-LC-MS/MS using CID and HCD fragmentation. Due to
peptide fragmentation of O-glycopeptides using HCD-MS2 a
few novel glycopeptides and O-glycosylation sites could be
defined from e.g. heparin-binding EGF-like growth factor and
insulin-like growth factor-2. Balog et al. used HILIC chroma-
tography to purify endogenous glycopeptides in the urine of
individuals infected with the Schistosoma mansoni parasite
[64]. They used matrix assisted laser desorption and
ionization-time of flight (MALDI-TOF) MS/MS and ESI
LC-MS/MS and found endogenous glycopeptides typically
containing a triply fucosylated glycan with core 2 like struc-
ture. These fucosylated structures were absent in uninfected
individuals. By fragmentation of the peptide backbone they
identified the peptide as 85-WDLDPEVRPTSAVAA-99 from
Apo-CIII, thus demonstrating a change in host protein glyco-
sylation in response to the parasite infection. Recently, Pac-
chiarotta et al. purified endogenous Fibrinogen alpha chain O-
glycopeptides from urine samples and found that the glyco-
peptide level was raised for individuals with urinary tract
infection [65].

Halim et al. used an immunopurification MS protocol
[92-94] to enrich endogenous amyloid-3 glycopeptides orig-
inating from the amyloid precursor protein (APP) in human
cerebrospinal fluid (CSF) samples. A series of relatively large
APP/Amyloid 3 (AP) glycopeptides, spanning from e.g. res-
idue —57 to residue 15 (numbered in relation to Asp1 ofthe A3
sequence) and with 1 to 4 (NeuSAc),HexHexNAc glycans in
the sequence, were identified using CID [60]. Verification of
the identities was obtained by diagnostic peptide backbone
fragmentations in the presence of O-glycosylations, and by
the co- presence of the corresponding unglycosylated peptides
in the LC-MS/MS runs, which also provided semi-quantitative
information on the abundance of glycosylation. In the same
LC-MS/MS runs using CID also shorter A3 1-X glycopeptides,
e.g. AB1-15 (DAEFRHDSGYEVHHQ), were identified hav-
ing a NeuSAcHex(NeuSAc)HexNAc-O- glycan attached to the
peptide. ECD fragmentation showed that the glycan was
uniquely attached to Tyr10, defining for the first time a tyrosine
glycosylation with sialic acid containing glycans. Steentoft et
al. recently confirmed the possibility of tyrosine glycosylation
using a Simple cell methodology [35], see below.
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Even intact glycoproteins may be studied with ECD/ETD
fragmentation. Apolipoprotein CIII (Apo-CIII) is a small O-
glycoprotein (79 residues), which is known to be O-
glycosylated at Thr94 [95]. Ito ef al. analyzed by mass spec-
trometry the entire protein and found the glycan to be composed
of sialylated and disialylated core 1 structures [96]. Mazur et al.
used top-down ETD fragmentation analysis of the intact Apo-
CIII O-glycoprotein [66] and pinpointed the glycosylation
sites of the NeuSAcHexHexNAc, (NeuSAc)2HexHexNAc
O-glycans O-glycans to either one of the three most
C-terminal Ser/Thr residues. Direct pinpointing of the
glycosylation site to Thr94 in the tryptic peptide 79-
DKFSEFWDLDPEVRPTSAVAA-99 was accomplished by
Ueda ef al. [67] using MALDI-TOF/TOF analysis.

Global O-glycoproteomics; enrichment and structural
characterization of O-glycopeptides

The global mapping of O-glycosylation sites of proteins in
complex mixtures is becoming increasingly available
through the analysis of O-glycopeptides obtained from pro-
tease digestion of such protein samples. However, to accom-
plish efficient O-glycoproteomics from biological samples it
is necessary to selectively enrich the O-glycopeptides from
the vast amount of unglycosylated peptides (Fig. 1b—d).
Secondly, various mass fragmentation techniques are need-
ed to characterize the possible Ser/Thr and Tyr attachment
sites, and ultimately to characterize the glycan heterogene-
ities of such glycoproteins. The following paragraphs will
give examples of such strategies.

Sialic acid capture-and-release strategy

Nilsson et al. introduced a hydrazide chemistry method for
the sialic acid capture-and-release of both N- and O-
glycopeptides (Fig. 1b) [80], which is based on two well
established facts regarding sialic acid containing glycans: 1)
sialic acids may be selectively oxidized on the glycerol
chain by using mild periodate oxidation and ii) sialic acid
glycosidic bonds may be selectively hydrolyzed by mild
acid treatment. Through this approach it was possible to
capture sialylated glycoproteins onto hydrazide beads, wash
extensively, perform trypsin digestion and then release
desialylated N- and O-glycopeptides with 0.1 M formic acid
at 80 °C for 60 min. Also, the Nishimura group presented a
similar methodology named reversed glycoblotting [97], see
below. Nano LC-ESI-MS/MS on a hybrid Fourier transform
ion-cyclotron resonance (FT-ICR) spectrometer (LTQ-FT)
was used with the precursor ions measured with high accu-
racy in the FT-ICR detector and then selected, fragmented
with collision induced dissociation (CID) and measured in
the linear ion trap quadrupole (LTQ). The strategy was

validated on model proteins, such as human serum transfer-
rin and bovine fetuin, and was then initially used for the
characterization of glycoproteins and glycopeptides in hu-
man cerebrospinal fluid samples. The CID-MS2 spectra of
O-glycopeptides typically showed loss of Hex into the pep-
tide + HexNAc ion and loss of HexHexNAc into the peptide
ion. The O-glycans were thus composed of HexHexNAc-O-
in support of a core 1 (Gal3GalNAcxl1-O-Ser/Thr) struc-
ture. Furthermore, CID-MS3 of the peptide ion gave peptide
backbone fragmentation into »- and y-ions, which was used
to identify the peptide by Mascot protein database searches
(see below for the analogous CID-MS2/MS3 strategy re-
garding N-glycopeptides (Fig. 4)). The precursor mass for
the Mascot search was set to the measured glycopeptide
mass minus the calculated mass of a HexHexNAc ion
(365.1322 amu) in order to take advantage of the high mass
accuracy of the precursor, measured in the FT-ICR cell.
With this approach 44 O-glycosylation sites on human
CSF proteins were identified [80].

Unfortunately, this CID-MS2/MS3 approach does not gen-
erally give the Ser/Thr glycan attachment sites of O-
glycopeptides containing several Ser/Thr since the glycan is lost
before the peptide backbone is fragmented. However, occasion-
ally peptide fragmentation took place in the presence of an intact
HexNAc-O-. This was especially true for proline containing
peptides giving rise to prominent - and/or y-ion peaks resulting
from fragmentation at the N-terminal side of proline [98], which
thus could be used to pinpoint the exact attachment sites, or at
least exclude some of them. By using a combination of CID and
ECD fragmentation (Fig. 3) three glycosylation sites of the
Amyloid Precursor Protein (APP770 isoform) were character-
ized [60], one of which was identical to the Thr576 (APP695
isoform) identified by Perdivara ef al. [63].

Recently, Halim ez al. used this sialic acid capture-and-
release strategy on human urine samples [99] and intro-
duced the systematic use of ECD for pinpointing both the
N- and the O-glycosylation sites of urinary proteins. In total,
58 N- and 63 O-linked glycopeptides from 53 glycoproteins
were characterized and the combined use of CID and ETD
allowed for the exact identification of Ser/Thr attachment
site(s) for 40 of 57 O-glycosylation sites, 29 of which were
not reported before [99]. The core 1 like structure (HexHex-
NAc-O-) was the major glycoform found for all O-
glycopeptides but also a core 2 like structure (Hex(HexHex-
NAc)HexNAc-O- was identified for a few of the O-
glycopeptides, demonstrating the possibility to perform a
global characterization of not only O-glycosylation sites
but also that of glycan structures. One advantage of using
a chemistry based method such as a covalent capture using
hydrazide chemistry is that the solid phase can be exten-
sively washed in order to get rid of virtually all background
binding of unglycosylated peptides. However, upon treat-
ment with formic acid, even under mild conditions peptide
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Fig. 4 FTICR-MS/CID-MS" analysis of N-glycopeptides enriched
from bovine serum. a CID-MS2 of the triantennary N-glycopeptide
LCPDCPLLAPLNDSR of bovine alpha-2-HS-glycoprotein. b CID-
MS2 of the triantennary N-glycopeptide GLGFNLTELAEAEIHK of
bovine alpha-1-antitrypsin. ¢ and d show CID-MS3 of the most abun-
dant fragment ion in (a) and (b), respectively. e and f show CID-MS3

bonds after Asp residues are occasionally hydrolyzed and
sialic acids are always lost. An elegant way to avoid hydro-
lyzing the sialic acid glycosidic bond is to use cold 1 M HCI
as was recently shown by Kuroguchi ef al. [100].

Lectin based strategy

Darula et al. presented a lectin-based approach for the
global enrichment of O-glycopeptides originating from bo-
vine serum proteins (Fig. 1¢) [34]. After tryptic digestion of
the serum sample they used Jacalin-coated columns, which
recognize terminal GalNAcxl-O- and GalNAcx1-O- sub-
stituted at the 3-OH position, for the affinity enrichment of
O-glycopeptides. The major glycoforms isolated carried
Neu5AcGalPB3GalNAc-O- glycans and mainly ETD was
used for glycopeptide identifications. The authors
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of the Y;-type (m/z 972.9) fragment in (a) and (b). The CID-MS3
spectra of the most abundant fragment ions at m/z 1682.7 (a) and m/z
1683.3 (b) were used to verify the N-glycan structure. The N-
glycopeptide identities were verified only when the fragment ions at
m/z 972.9 were analyzed by CID-MS3. The structure of precursor ions
subjected to CID-MS" fragmentation are shown boxed in each panel

pinpointed 26 glycosylation sites from bovine serum glyco-
proteins, and later expanded the list with about 10 additional
ones [101, 102]. Very recently Darula ef al. introduced the
use of complementary chromatographic steps, e.g. ion ex-
change chromatography, to further fractionate bovine serum
samples both at the glycoprotein and the glycopeptide lev-
els. With this approach a total of 124 O-glycosylation sites
from 51 glycoproteins were identified [103]. The authors
found that the ionization efficiency was low when the m/z
values approached 1,000 and that it was advantageous to
remove both the NeuSAc and Gal residues by using neur-
aminidase and {3-galactosidase to reduce the m/z values of
the glycopeptides by 291 and 162 Da, respectively. This
procedure improved the ETD ionization efficiencies and the
remaining GalNAcx1-O- residues were left intact for the
identification of the exact glycosylation sites. One example
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of an O-glycosylation presented was Ser296 of bovine
fetuin, which independently was found also by Halim et
al. [80] and by Zauner et al. [40]. Zauner et al. used
proteinase-K digestion in combination with hydrophilic in-
teraction liquid chromatography (HILIC) to purify both N-
and O-glycopeptides from bovine fetuin in their study.

The Simple Cell strategy

Steentoft et al. recently designed a completely novel strate-
gy to specifically produce only GalNAcol-O- modified O-
glycoproteins from cell cultures (Fig. 1d) [35]. They used
the zinc finger nuclease gene targeting method [104] to
silence the expression of the cosmc chaperone, which is
essential for the production of functional Gal-T1 transferase
[105]. Thus, Gal elongation of the initial GaINAc-O- mod-
ifications becomes completely blocked. After trypsin diges-
tion of cell extracts they used Vicia villosa agglutinin (VVA)
affinity columns for the selective enrichment of such trun-
cated GalNAcxl-O- substituted O-glycopeptides. For the
MS analysis, Steentoft et al. used HCD, which fragmented
away the GalNAc residue(s) during the MS2 and provided
peptide backbone fragmentation for glycopeptide identifica-
tion. Also, ETD was used to pinpoint O-glycosylation sites,
and as many as 10 glycosylation sites could be mapped on
some tryptic peptides. With this approach more than 350 O-
glycosylation sites from 100 human proteins have now been
identified [35]. Most recently, the SimpleCell strategy was
extended to study the isoform-specific functions of
ppGalNAc-Ts [106].

The three global glycoproteomics strategies for the charac-
terization of O-glycosylations described above (Fig. 1b—d)
have a common feature i.e. native O-glycopeptides are struc-
turally simplified during the enrichment procedure. For the
sialic acid capture-and-release method sialic acids are re-
moved during the enrichment procedure leaving only the core
(mostly core 1) glycopeptides to be analyzed. For the jacalin
lectin approach sialylated core 1 substituted O-glycopeptides
are trimmed down by the use of a-neuraminidase and [3-
galactosidase. Finally, for the Simple Cell approach only
GalNAc«x1-O- substituted O-glycopeptides are produced and
enriched. These simplifications of glycan structures are bene-
ficial for MS analysis since the fragmentation spectra are
much simplified. The reduction of glycan mass and thus also
the m/z value is also beneficial for the use of ECD and ETD
fragmentation techniques. A disadvantage of studying only
GalNAc substituted O-glycopeptides is however that all struc-
tural information of possible glycan extensions is lost.

For lectin based approaches, and other methods depen-
dent on weak affinity purification, there still remains diffi-
culties in selectively purifying only one glycoprotein or only
one glycoform of a protein [24], and often there remains a
great deal of unglycosylated peptides present in the LC-MS/

MS runs. To minimize this background Steentoft et al. used
an initial HCD, which produces a major HexNAc" oxonium
ion at m/z 204 when the precursor is a GalNAc substituted
glycopeptide. The presence of the critical m/z 204 peak was
programmed to trigger a subsequent ETD fragmentation
event on the same precursor. HCD is a fast fragmentation
method compared to ETD, and the triggering of ETD only
for true glycopeptides maximized the number of precursors
that could be fragmented [35].

N-glycoproteomics

N-glycosylated proteins are certainly the most well studied
class of glycoproteins. The combination of proteomics and
glycomics has proven to be a powerful tool for such
studies. However, a comprehensive understanding of N-
glycoprotein structure (and function) also requires a
detailed knowledge of the site-specific location of N-
glycan structures. An important complement to the well-
established techniques of proteomics and glycomics is
thus glycoproteomics where intact N-glycopeptides,
obtained either from targeted single glycoproteins or
from global analyses of complex biological mixtures,
are studied with respect to both glycan structures, at-
tachment sites and peptide sequences.

Although N-glycoproteins include the high-mannose-
(Mans_9GlcNAc,-N-Asn) and hybrid-type (e.g.
Mans(Neu5AcGalGlcNAcMan)ManGlecNAc,-N-Asn)
modifications, secreted and membrane bound glycopro-
teins are most commonly glycosylated with the sialylated
complex-type (e.g. Neu5AcGalGlcNAcMan(Neu5Ac
GalGleNAcMan)ManGIcNAc,-N-Asn) N-glycans (see
Fig. 1) [107-109]. Traditionally, researchers have used vari-
ous pre-analytical strategies to overcome some of the difficul-
ties associated with MS-based characterization of N-
glycosylated proteins. Most commonly, N-glycoproteins/pep-
tides are enriched with lectins [110-114], titanium dioxide
columns [115, 116], graphite microcolumns- [117], size-
exclusion-, hydrophilic interaction liquid chromatography
(HILIC) [55, 79, 118], boronic acid- [46] or hydrazide chem-
istry based approaches (Fig. 1) [119-122]. Many of these
protocols typically involve enzymatic hydrolysis of the
enriched N-glycoproteins and glycopeptides by peptide:N-
glycosidase F (PNGase F), which cleaves the (3-aspartyl V-
acetylglucosaminyl bond of both high-mannose-, hybrid- and
complex type N-glycans [123, 124]. The PNGase F treatment
thus releases the N-glycans with an intact chitobiose reducing
end while hydrolyzing the formerly glycosylated asparagine
residue to an aspartic acid. Released N-glycans are subse-
quently characterized by glycomic techniques while the
deglycosylated proteins and peptides are identified by estab-
lished proteomic methods.
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The separation of N-glycans from their protein carriers
has its own advantages and disadvantages. In glycomics,
sensitive characterization of N-glycan structures is indeed
achieved but the site-specific location of these glycans and
the identities of their protein carriers are lost. Methods that
involve the analyses of N-glycans released from their pro-
teins carriers are not covered here but the readers are instead
referred to the following reviews [125, 126].

Hundreds to thousands of N-glycosylation sites of for-
merly N-glycosylated proteins have now been identified by
the proteomic analysis but this approach is still unable to
provide any structural information on the actual N-glycans
attached to the glycoproteins identified. Not only after
PNGase F treatment but also in nature, asparagine can
change into aspartic acid and thereby can increase the rate
of false positive identifications [127, 128]. However, if
PNGase F digestion is performed in H,'%0, the formerly
glycosylated asparagine would obtain a +3 mass units shift
[129] and thus the N-linked glycosylation site will be spe-
cifically labeled by '*0O and detected by MS. The technique
is named isotope-coded glycosylation site-specific tagging
(IGOT) [129] and provides direct evidence for N-
glycosylation sites.

Targeted N-glycoproteomics: structural characterization
of single N-glycoproteins

In N-glycoproteomics, MS-based methods may be used to
elucidate not only glycoprotein identities but also to charac-
terize glycan structures and pinpoint their exact protein attach-
ment sites. This methodology has an absolute requirement for
intact glycopeptides. So far, MS-based strategies aimed at
analyzing intact N-glycopeptides have generally been limited
to the targeted or monoproteic approach, a definition recently
used by Dodds et al. to describe the glycoproteomic analysis
of single glycoproteins [130]. Examples of such studies in-
clude MS-analysis of commercially available glycoproteins,
e.g. apolipoprotein B100, bovine ribonuclease B, asialofetuin
and ceruloplasmin [131-134]. Commercially available glyco-
proteins are typically supplied as highly purified mono-
species, which allows a direct analysis of the proteolytic
digests to detect and characterize their N-glycopeptides by
LC-MS/MS methods. However, researchers have also adop-
ted one of several chromatographic strategies to enhance the
sensitivity of their analyses, i.e. the use of normal-phase
chromatography, HILIC or graphitized carbon to separate N-
glycopeptides from non-glycosylated peptides [38, 40, 117,
135-137]. Lectin chromatography has also been used for the
enrichment of N-glycopeptides derived from commercially
available glycoproteins [110, 138]. In addition, targeted anal-
ysis of N-glycoproteins, derived either from biological sam-
ples or commercial sources, has been achieved through the
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analysis of in-gel digested samples following isoelectric fo-
cusing (IEF) [139] or 2D-SDS-PAGE separation [140, 141].

Global N-glycoproteomics: enrichment
and characterization of N-glycopeptides

Various enrichment strategies, many of which are already
mentioned, have been combined with MS-analysis for the
global scale analysis of N-glycoproteins and glycopeptides
from biological samples[111, 142]. Hancock’s group used
multi-lectin affinity (M-LAC) columns (ConA, WGA and
jacalin) to enrich N-glycoproteins from human plasma [143,
144]. Following trypsin digestion of the enriched N-
glycoproteins, 25 N-glycopeptides were identified by repli-
cate LC-MS/MS analyses of PNGase A treated and untreat-
ed N-glycopeptides. This strategy is based on LC-MS/MS
characterization of intact N-glycopeptides and on identifica-
tion of the peptide sequence by proteomic analysis of the
deglycosylated samples. The precursor masses measured by
FTICR-MS in the replicate analyses are ultimately used to
correlate the fragmentation spectra of specific N-
glycopeptides to specifically identify the deglycosylated
peptides. Uematsu ef al. employed a similar approach using
ConA to affinity-purify tryptic N-glycopeptides derived
from murine dermis and epidermis and by using MALDI-
TOF/TOF for the analysis 20 N-glycopeptides carrying
high-mannose type N-glycans were identified in PNGase F
treated and untreated replicates [145]. The same group also
developed “reverse glyco-blotting” for the chemistry-based
enrichment of glycopeptides from complex biological mix-
tures. In their initial approach, oxidized sialic acids of tryp-
tic N-glycopeptides were conjugated to aminooxy-
functionalized polymers via stable oxime bonds and re-
leased by trifluoroacetic acid hydrolysis of the sialic acid
glycosidic bonds [97]. Independently, Nilsson et al. devel-
oped a similar enrichment strategy based on hydrazide
chemistry [80]. Using LC-ESI-MS/MS analysis, 36 N-
glycopeptides derived from human CSF were characterized
with respect to both glycan- and peptide sequences which
demonstrated the successful use of a MS-method involving
CID-MS?2 followed by CID-MS3 of the top-five fragment
ions for complete glycan and peptide characterization of N-
glycopeptides. This MS-method is dependent on the char-
acteristic CID-fragmentation pattern of N-glycopeptides
[73, 142]. Typically, CID-MS2 of N-glycopeptides gener-
ates abundant Y;-type fragments, i.e. peptide + HexNAc
fragments, which are further analyzed by CID-MS3 to induce
peptide backbone b- and y-type fragmentations. The CID-MS3
spectrum is then used to identify the peptide sequence by
database searches, e.g. by using the Mascot algorithm. The
principle for this MS-method was demonstrated on model N-
glycoproteins by Wuhrer and co-workers [38]. In Fig. 4, the
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applicability of this MS-method is shown for the analysis of
two triply charged N-glycopeptides, enriched from bovine se-
rum, with different identities but with the same nominal masses
(at m/z 1243.5325 and m/z 1243.8896). These examples under-
score the need for accurate mass measurements of precursor
ions and tandem MS fragmentations for confident identification
of N-glycopeptides derived from complex biological samples.

In 2010, an improved enrichment strategy for N-
glycopeptides, based on hydrazide chemistry, was reported
by Nishimura and co-workers [100]. In their refined meth-
od, release of sialylated glycopeptides by ice-cold 1 M HCl
was reported, along with the identification of 67 N-
glycopeptides from mouse serum. Thus, this release strategy
represents an alternative method for the enrichment of sia-
lylated N-glycopeptides. More recently, Halim ef al. ex-
plored the N-glycoproteome of human urine using the
sialic acid capture-and-release protocol [99], which allowed
for the identification of glycan sequence, peptide sequence
and glycan microheterogeneity of 58 N-glycopeptides by
LC-MS/MS using a combined CID and ECD fragmentation
analysis approach. The applicability of HCD and ETD for
the sequence analysis of N-glycopeptides has previously
been demonstrated [146—-148].

Linking glycans to proteins through data base
management

The complexity of glycans described by glycomics
approaches demand unique technologies, unique nomencla-
ture and data handling and should be continuously advanced
[149, 150]. However, the novel glycoproteomic approaches,
described in this review, are quickly adding new and signif-
icant data on the structural modifications of glycoproteins
which fit very well also into established protein databases.
Thus, although most glycans have not been described in
such structural details, as is state-of-the-art in the glyco-
science fields, a partial characterization of a glycan or even
the mere presence of a glycosylation at any specific amino
acid residue in a glycoprotein, is of considerable interest for
understanding the role of glycosylation. We have experi-
enced a growing interest from e.g. UniProt (Fig. 5), in add-
ing information on glycosylation structure and sites into the
Swiss-Prot database, which is now manually being updated
on published results. A critical issue is the validity of the
actual information, on the glycan structures and their attach-
ment sites (or regions), being reported into the database but
as long as references are given manually to the original
publications there is no need for either reductionism or
overinterpretation of data. When automatic routines become
implemented quality assurance must follow to avoid false
information to be stored and at that stage a linkage to
glycomics databases should probably be established.

Sequence annotation (Features)

Feature key Position(s) Length Descriptior
Molecule processing

Signal peptide 1-29 29

Chain 30-653 624 Alpha-dystroglycan

Chain 654 - 835 242 Beta-dystroglycan
Regions

Topological domain 654 - 749 96 Extracellular

Transmembrane 750 - 775 26 Helical;

Topological domain 776 — 895 120 Cytoplasmic [ Fo!

Domain 500-733 234 Peptidase S72
Region 30 - 408 379 Required for laminin gniti a
Region 48-71 3 O-glycosylated at one site
Region 316 -485 170 Mucin-like domain b
Aegion 463 - 485 v
Region 819 -895 77 Required for interacion with CAV3
Region 880 - 895 16 Required for binding DMD and UTRN
Motif 776 - 782 7 Nuclear localization signal
Motif 889 - 892 4 PPXY motif
Compositional bias 317 - 484 168 Thr-rich
Compositional bias 809 - 835 87 Pro-rich

Amino acid modifications
Modified residue 892 1 Phosphotyrosine; by SRC
Glycosylation 141 1 N-linked (GlcNAc...)
Glycosylation 367 O-linked (Hex...) C
Glycosylation 369 1 Odinked (Hex...)
Glycosylation arz
Glycosylation arg O-linked (Man6P...) d
Glycosylation 381 1 Odinked (Hex..)
Glycosylation 388
Glycosylation 455 1 O-inked (GalNAc...) e
Glycosylation 641 1 N-linked (GlcNAc..) |f
Glycosylation 649 1 N-linked (GlcNAG...)
Glycosylation 661 1 N-inked (GlcNAc...)
Disulfide bond 182 « 264 ont
Disulfide bond BEG « 713

Fig. 5 UniprotKB HTML presentation of human Dystroglycan pre-
cursor (http://www.uniprot.org/uniprot/Q14118). Specific O-
glycosylation features are encircled as a reported in [80]; b reported
in [57]; ¢ reported in [57]; d reported in [75]; e reported in [57]

Hopefully, all groups working with glycoproteomics will
from now on systematically submit their data to e.g. UniProt
to increase the general awareness and availability of novel
or confirmatory protein glycosylation sites and their site-
specific glycan structures.

Conclusions

Glycoproteomics has recently evolved as a new and very
promising complementary “-omics”. This methodology,
designed for a global characterization of complex glycopro-
teins enriched from cell cultures and from biological sam-
ples, gives novel structural information on core glycans and
their exact attachment sites on, even low abundant, glyco-
proteins. Much has been learned from the success of global
proteomic analyses both as to preanalytical, analytical and
postanalytical strategies, which have thus become
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applicable also for use in the field of glycoproteomics.
However, seemingly minor but very critical alterations in
these strategies are necessary for a successful application of
the analyses for glycoproteins and glycopeptides. In this
review we have described and exemplified some of these
critical steps for enrichment of glycoproteins and glycopep-
tides, for simplification of their glycan structures prior to
glycosylation site analysis and for selection of optimal frag-
mentation techniques and instrumentations for liquid chro-
matography tandem mass spectrometry. Finally, we have
urged the glyco-science community to store novel experi-
mental data on glycan structures and attachment sites in
well-established protein databases even when structural in-
formation on the complete glycan structures are missing. We
have tried to be inclusive as to referring to all valuable
contributions in the field but apologize if we have failed
and mistakenly left some references out.
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